A framework to identify physiological responses in microarray-based gene expression studies: selection and interpretation of biologically relevant genes.
نویسندگان
چکیده
In whole genome microarray studies major gene expression changes are easily identified, but it is a challenge to capture small, but biologically important, changes. Pathway-based programs can capture small effects but may have the disadvantage of being restricted to functionally annotated genes. A structured approach toward the identification of major and small changes for interpretation of biological effects is needed. We present a structured approach, a framework, that addresses different considerations in 1) the identification of informative genes in microarray data sets and 2) the interpretation of their biological relevance. The steps of this framework include gene ranking, gene selection, gene grouping, and biological interpretation. Random forests (RF), which takes gene-gene interactions into account, is examined to rank and select genes. For human, mouse, and rat whole genome arrays, less than half of the probes on the array are annotated. Consequently, pathway analysis tools ignore half of the information present in the microarray data set. The framework described takes all genes into account. RF is a useful tool to rank genes by taking interactions into account. Applying a permutation approach, we were able to define an objective threshold for gene selection. RF combined with self-organizing maps identified genes with coordinated but small gene expression responses that were not fully annotated but corresponded to the same biological process. The presented approach provides a flexible framework for biological interpretation of microarray data sets. It includes all genes in the data set, takes gene-gene interactions into account, and provides an objective threshold for gene selection.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملDiagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data
Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2008